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Evaluation of the Munich Method for Modeling Rocket
Engine Performance

Frank J. Zeleznik*
NASA Lewis Research Center, Cleveland, Ohio 44135

A new procedure, dubbed the Munich Method, has been proposed recently for the modeling of rocket engine
performance. The author of the Munich Method claims it to be an extension and improvement of the ther-
modynamic procedures used to model rocket engines in the NASA-Lewis chemical equilibrium program. An
examination of the Munich Method shows that it contains several flaws. If these defects are corrected then the
Munich Method will produce results identical to those generated by the NASA-Lewis Code.

Nomenclature
A = cross-sectional area of a rocket engine
aai = number of atoms of element a in species i
h« = gram atoms of element a per unit mass
Cp = molar heat capacity at constant pressure and

composition
cp = specific heat at constant pressure and composition
Hi = partial molar enthalpy of the /th species
h = specific enthalpy
hF - injection specific enthalpy
L = number of chemical elements
M = mean molecular weight
Mi = molecular weight of the /th species
m = mass flow rate
N = number of chemical species
nt = moles of species / per unit mass
p = pressure
pF = injection pressure
R = universal gas constant
Si = partial molar entropy of the /th species
s = specific entropy
T = thermodynamic temperature
u = flow velocity
v = specific volume
Wj = weight fraction of the /th species
Xi = mole fraction of the /th species
Hi = chemical potential of the /th species, Ht - TSt
77v = Lagrangian multiplier for element a.
TTE = Lagrangian multiplier for energy
TTM = Lagrangian multiplier for momentum

Introduction

T HE NASA-Lewis Code for the thermodynamic calcu-
lation of reacting system properties has a long history

dating from the very first version in 1959 to its most recent
revision in 1988.1~7 In that time-span it has achieved world-
wide distribution and has come to be regarded, by many, as
the program of choice for performing those thermodynamic
calculations which it offers. The available options are 1) equi-
librium compositions, and the one-dimensional thermody-
namic modeling of 2) gaseous detonations, 3) shock waves,
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and 4) rocket engine performance. The program uses standard
thermodynamics and standard one-dimensional flow equa-
tions, and has never elicited any controversy. In fact, any
issues of consequence were throught to have been resolved a
quarter of a century ago. However, a book8 has been pub-
lished recently which claims to be a fundamental look at the
procedures used in the NASA-Lewis Code to model the per-
formance of chemical rocket engines. In particular, the ex-
press purpose of that book (p. 7) is to present an "analysis
and correction of" the NASA-Lewis Code for the thermo-
dynamic modeling of rocket performance. The Munich Method
is the soubriquet the author of the book confers on his pro-
cedure.

Throughout his book the author of the Munich Method
makes some strong, unsupported allegations about the defi-
ciencies of the NASA-Lewis computer program. For example,
he cannot understand (p. 57) why the code is not "officially
questioned because of its serious theoretical errors." He as-
serts (p. 67) that the program is based on a theory "whose
premises are no longer known, or cannot be assessed, or are
purposely ignored." Moreover, he avers (p. 95) that there
occur "in practical applications of the NASA-Lewis Code,
unexpected ambiguities in the results." Incredibly, there is
even the intimation (p. 12) that the Lewis Code is responsible
for the Challenger disaster. The author offers the Munich
Method as a replacement for the rocket performance calcu-
lations of the Lewis Code. Those who might be skeptical of
the Munich Method as a substitute for the Lewis Code are
admonished by the author (p. 100) that "At least they are
informed and will be spared a retreat to the status quo ante."

At the technical level, the author contends that the Lewis
Code ignores the pressure drop in a finite-area combustion
chamber, and also that it does not require the constancy of
the steady mass flow rate in the rocket nozzle (p. 48). He
also objects to the use of Gibbs energy minimization in the
Lewis Code to determine equilibrium states in the nozzle. It
seems the author is troubled that the temperature and pres-
sure are changing during the flow through a rocket, and con-
cludes that Gibbs energy minimization is (p. 92) "theoretically
inadmissible" and is (p. 158) an "untenable" and "theoreti-
cally crude approximation." Moreover, he charges (p. 250)
that the program's thermodynamic data "have not been checked
. . . in over twenty years, let alone altered."

Some of his misperceptions must simply reflect the fact that
he is probably working with a copy of the program that has
been superseded by several more recent versions. Clearly, the
available references1"7 and the many current users of the pro-
gram attest to the fact that the program does account for
finite-area combustion chambers, and that both the program
and its data have been regularly updated. Other faulty per-
ceptions must stem from misconstruing the program docu-
mentation. For example, he finds fault with the procedure

191



192 ZELEZNIK: EVALUATION OF THE MUNICH METHOD

used to calculate the nozzle properties as a function of area
ratio (p. 97). This occurs in spite of the fact that the method
routinely converges to better than 0.004% in the pressure
ratio at each point of the nozzle. One possible explanation
for this is that he perhaps fails to make a distinction between
initial estimates and the converged results.

A review9 of the book has been published recently. That
review discussed the book only in general terms and did not
address the technical aspects of the Munich Method. How-
ever, among other things, it concluded that "The book is
difficult to read or digest, and the explanations for the basic
phenomena are sometimes not very lucid. Some statements
made about the Navier-Stokes equations are questionable."
It also said that "The book is strictly for experts in thermo-
fluiddynamics. Even for them it will probably require several
weeks of intensive study . . . (to) truly comprehend the book."

The purpose of this paper is to examine the technical aspects
of the Munich Method and its claim to be an improvement
over the NASA-Lewis Code. There are three relevant ques-
tions about the Munich Method which must be addressed.

1) Are the governing equations thermodynamically and
mathematically correct?

2) Are the working equations, whether correct or incorrect,
implemented in a numerically correct manner?

3) Regardless of the answers to questions 1) and 2), are
the predictions of the proposed method an improvement over
those given by the Lewis Code?

Alternative Theory and the Munich Method
Much of the book8 is irrelevant to its avowed purpose. It

is poorly organized, and suffers from a poor translation from
the original German. To place its charges into some context,
it is necessary to review its contents briefly. The book is
divided into two parts. A substantial portion of the first part
of the book, and all of Appendix 1, are devoted to the trivial
case of the one-dimensional flow of a nonreacting, "relaxing
model gas." Apparently the intent is to demonstrate that the
heat capacity ratio and the isentropic exponent are unequal
when there is a "conversion process." This has been known
to some people for at least 40 yr and, perhaps, longer.

The second portion of the book is dedicated to what is
called the Alternative Theory and to the Munich Method for
doing rocket performance calculations. According to the au-
thor (p. 121), the Alternative Theory "is a phenomenological
continuum theory of real compressible fluids." Furthermore,
(p. 133) "fundamental elements of the Alternative Theory
serve as the basis for the set of premises used for the Munich
Method." Apparently such a theory is necessary, in the au-
thor's view, since he erroneously contends (p. 124) that the
Navier-Stokes equations are "valid only for an incompressible
rnodel fluid." Actually, the Alternative Theory is nothing
more than a collection of unsupported statements which cul-
minate in an equation which is named the Navier-Saint Venant
equation. This appellation is conferred on the equation de-
spite the fact that neither Navier nor Saint Venant had any-
thing to do with it. The equation, which is not derived in the
book, is never applied to modeling rocket engine performance
or anything else.

The Munich Method, when reduced to its essentials, is
simply the prescription that all equilibrium states in a rocket
engine should be determined by maximizing the entropy rather
than minimizing the Gibbs energy. Apparently, the author is
unaware that the two procedures produce identical results
when properly executed. These are only two of several al-
ternative, but equivalent, formulations of thermodynamics as
is made clear in a number of thermodynamic texts. Never-
theless, the author declares that the combustion state must
be determined by maximizing the entropy so as to satisfy the
one-dimensional energy and momentum equations for a pre-
scribed mass flow rate and a specified cross-sectional area for
the combustion chamber (p. 139ff). When it comes to cal-
culating the converging-diverging portions of the rocket en-

gine, he contends that the calculation must be carried out with
the same mass flow rate as was used in the combustion cal-
culation. He refers (p. 48) to this constancy of the mass flow
rate as an "eigenvalue" rather than simply a constant param-
eter for the calculation. His prescription is to integrate what
he refers to as the "nozzle differential equation" (p. 147,161)
which is nothing more than the partial derivative of the pres-
sure with respect to temperature at constant entropy. Com-
positions along the converging-diverging portions of the rocket
engine are to be calculated by a minimization of the Gibbs
energy at the local temperature and pressure obtained by an
integration of the "nozzle differential equation." The ration-
ale for using the Gibbs energy here, even though it contrav-
enes his entropy maximization dictum, is that it provides a
"substitute process for the linkage between two states (p.
158)." The mass flow rate is determined iteratively by doing
successive combustion and throat calculations until the ve-
locity at the throat converges to the sonic velocity (p. 160).
A similar iterative computation between the throat and the
nozzle exit determines the exit properties so as to maintain
the mass flow rate fixed at the throat value while conserving
energy (p. 164).

This brief outline of the Munich Method shows it to be
pretty much standard thermodynamic fare, independent of
any alternative theory and, if implemented correctly, cannot
yield results which differ from those produced by the NASA-
Lewis Code. As such, the method is incapable of supplying
any new insight into rocket engine design. Therefore, the issue
devolves to the evaluation of the correctness and efficiency
of implementation. The following sections of this paper will
examine the combustion equations, the nozzle calculations,
and the numerics in greater detail.

Combustion Equations for the Munich Method
According to the Munich Method, the combustion state is

to be determined by maximizing the entropy, regarded as a
function of temperature, pressure, and composition. The
maximum is subject to the constraints imposed by the one-
dimensional energy and momentum equations, as well as to
the constraint of elemental conservation. The entropy max-
imum criterion for equilibrium is normally written by consid-
ering the entropy to be a function of its natural variables
which, for a fluid, are internal energy, volume, and compo-
sition. However, it can be demonstrated that the entropy
maximum principle is valid when temperature and pressure
replace the internal energy and volume as independent var-
iables. This is simply a consequence of the behavior of an
extremum of a function under a change in independent var-
iables.

The equations of the Munich Method for rocket engine
combustion (p. 139, 140) actually come from the necessary
conditions for the constrained minimum of the negative en-
tropy using the method of undetermined Lagrangian multi-
pliers. There are L + 2 constraints for a system composed
of L chemical elements and these constraints impose the con-
servation of momentum, energy, and the elements.

Momentum

Energy

p + (mlA)2v = pF

h + (miA)2v2l2 = hF

Element Conservation

aaint = b°a a = l,2,..

The first two of these constraints contain the mass flow rate
per unit area which is a parameter of the problem. In Ref.
8, pF and hF are referred to as the fluid state pressure and
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enthalpy. More commonly, they would be called the injection
pressure and injection enthalpy, and correspond to the pres-
sure and enthalpy in the combustion chamber at the face of
the injector. The Lagrangian function for the minimization is
formed as a linear combination of the negative entropy and
the constraints:

+ 7rE[h + (mlA)2v2!2 - hF]

+ irM[p + (mlA)2v - pF]

This Lagrangian is shown as Eq. (3.17) on p. 139. It also
appears on p. 88 except that there it appears with an additional
term which is irrelevant for the present discussion. The choice
of sign for the multipliers associated with the elemental con-
straints is the same in both places and differs from the choice
made here. The reason for the different choice of sign here
will become apparent later. To complete the list of equations,
the Munich Method uses the ideal gas equation of state:

v = RT/pM

The mean molecular weight is expressible in terms of the
species molecular weights and the composition variables:

Since the composition variables are defined to be per unit
mass, the numerator in this expression is equal to unity. How-
ever, I shall not use this fact in generating the necessary
conditions for an extremum.

The necessary conditions for the extremum are obtained
simply by differentiating the Lagrangian function with respect
to the composition, temperature, pressure, and the multi-
pliers, and then setting the partial derivatives to zero. The
resulting system of equations for the extremum have the fol-
lowing form for a system composed of N species:

; = 0 = -S> : + iraaa

\H, (m/A)2v2(l - MJM) ]>
/ *

+ TTM I (mlA)2v(l - MJM)/ £ nA

- 1)HJT

(VTTE + TrM)(mlA)2v(l - MJM) / Z %

i = l,2,...,N

= 0 = -cp.+

(1)

(mlA)2v2

7TM(m/A)2v = (TTTE - l)cp + (VTTE + 7TM)(m/A)2v
(2)

= 0 = RIM - 7rE(mlA)2v2

+ KM[P ~ (m/A)2v]

= RIM - (VTTE + 77M)(m/A)2v + PTTM (3)

= 0 = 2 0«,A- - b« a = 1,2, . . . ,L (4)

d$/d>7TE = 0 = h + (mlA)2v2!2 - hF (5)

d3>/d<7rM = 0 - p + (mlA)2v - pF (6)

The Munich Method's version of the necessary conditions
are shown explicitly only on page 88 of Ref . 8 and contain
contributions from the additional, irrelevant term in the La-
grangian. If these extra terms are ignored, then those equa-
tions may be compared to the set of N + L + 4 equations
shown here. It is immediately apparent that the two sets of
equations are almost identical. As a minor point, it should
be noted that while both pages 88 and 139 of Ref. 8 indicate
that derivatives are calculated with respect to temperature
and pressure, the consonance with the equations shown here
demonstrates that the derivatives are really with respect to
the logarithms of these variables. Apart from the intentional
difference in the choice of sign for the Lagrangian multipliers
of the elemental constraints, the only real differences between
the equations shown here and those on page 88 occur in the
derivative of the Lagrangian function with respect to com-
position. These variances are caused by errors in the Munich
Method equation shown on page 88. Thus, partial specific
entropy and enthalpy appear there in place of the partial
molar quantities shown here. Partial specific quantities cannot
be correct. These would render the equation dimensionally
inconsistent, since it was generated by differentiation with
respect to moles. Differentiation with respect to moles in the
Munich Method is easily confirmed by examining the term
arising from the constraint on the elements. A more serious
error in the composition derivative involves the derivative of
the specific volume with respect to composition. For the ideal
gas equation of state, the specific volume depends on com-
position only through the mean molecular weight. In place of
the correct expression

MJM) nk = -

The corresponding Munich Method equation on page 88 shows
the following incorrect quantity:

-M,.(l -*,-) = -M, 1 -

While I have uncovered some errors in the combustion
equations for the Munich Method, they are not the working
equations for that method. Those are shown8 as Eqs. (3.18)
and (3.19) on page 140. It is certainly possible that the dis-
covered errors are merely typographical and that the working
equations are correctly deduced from the necessary conditions
for an extremum in the entropy. Consequently, I shall tem-
porarily ignore these errors, assume that the equations given
here are correct, and attempt to obtain the working equations
from them. The author of the Munich Method shows them
only for the simplest propellant combination, the cryogenic
hydrogen-oxygen system, and some of his algebraic manip-
ulations are predicated on the specific character of that sys-
tem. Since the general case is no more difficult than the special
case, I shall avoid system specific assumptions.

Equation (1) can be replaced by an equation obtained by
eliminating the combination VTTE + TTM between Eqs. (1) and
(2), multiplying the result by T, and replacing the specific
heat with the molar heat capacity at constant pressure and
composition. The two heat capacities have a simple relation-
ship

= cn
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These manipulations produce an equation which does not
contain the Lagrangian multiplier for momentum:

to+T^ 7Taaai + (TTTE - l)[Ht + TCp(Mt - M)/M] = 0
(7)

Similarly, we can replace either Eq. (2) or (3), but not both,
with their sum:

in place of the correct combination

(TTTE - l)cp + RIM + p<rrM = 0 (8)

The elemental constraint equations [Eq.(4)] serve to scale the
values of the moles nt. If one is only interested in relative
composition values then it is possible to use one of them, say
the last one, to express the conservation of elements in relative
form. In place of Eq. (4) we could use the L-l equations

(9)a = 1,2, ... ,L - I

which are a direct consequence of Eq. (4). However, since
we have effectively discarded the last member of Eq. (4) it
must be replaced by another equation involving the compo-
sition variables. The added equation is simply the identity
satisfied by the mole fractions. Mole fractions are easily ex-
pressible in terms of the molar composition variables:

These new composition variables satisfy a very simple equa-
tion by virtue of their definition:

(10)

Equations ,(5 -10) are a direct consequence of the Eqs. (1-
6) which are themselves the necessary conditions for the ex-
istence of a constrained extremum in entropy. However, the
set of Eqs. (1-6) has one more equation than the set of Eqs.
(5-10). As was pointed out previously, Eqs. (2) and (3) are
represented by the single Eq. (8) which is their sum. The
missing equation can be thought of as either Eq. (2) or (3),
their difference, or some other independent combination of
Eqs. (2) and (3). In effect, either Eq. (2) or (3) has been
arbitrarily discarded in generating the set of Eqs. (5-10). I
shall return to this point shortly, but first let us compare the
equations derived here with the working equations of the
Munich Method which appear as Eqs. (3.18) and (3.19) on
page 140.

If we specialize to the case L = 2, then each equation in
the set of Eqs. (5-10) corresponds to one member of the
working equations of the Munich Method with the exception
that the last member of Eq. (3.18) has no counterpart. Cor-
responding equations are exactly the same except for Eq. (7)
and its counterpart. To compare Eq. (7) to its mate we must
first relate partial molar properties to partial specific prop-
erties. The weight fractions are related to the moles by the
simple expression.

and therefore, the /th specific property can be converted to
the molar property by multiplication with the species molec-
ular weight. With this information we conclude that Eq. (7)
matches its counterpart in the Munich Method except for the
molecular weight terms. In the equation for the Munich Method
we find the term

- xt)/M

(M, - M)/M = M,(l - *,-) - ^ MjXj
L J*t \

M

shown in Eq. (7). This is consistent with the error already
observed while discussing the necessary conditions for an ex-
tremum. However, what is not in keeping with the earlier
discussion is that now the signs on the Lagrangian multipliers
7ra agree, whereas, at the start of the derivation they were of
opposite sign. While indicative of poor algebra or inadequate
proofreading, this is unlikely to be a serious problem for the
Munich Method. This is because the Munich Method uses
Lagrangian multipliers only to effect a solution of the extre-
mum problem. Derivatives of the Lagrangian multipliers can.
also be used to generate derivative properties such as the heat
capacity and the isentropic exponent for the equilibrium state.
These properties are used to calculate nozzle conditions and
incorrect values could adversely affect the prediction of nozzle
behavior. It seems, however, that the Munich Method's pro-
cedures for calculating derivatives are framed in terms of the
extent of reaction variables rather than the Lagrangian mul-
tipliers (see p. 144ff). Consequently, the erroneous multipliers
are probably not an important factor in any results calculated
by the Munich Method.

We now return to the saga of the abandoned equation.
There is one equation in the set of working equations for the
Munich Method which does not correspond to any member
of the set [Eqs. (5-10)] and which cannot be a consequence
of the necessary conditions for an extremum [Eqs. (1-6)]. It
is the last member of Eq. (3.18) and it specifies an entropy
value for the working fluid at the exit of the combustion
chamber. Thus, it follows that the Munich Method has quite
arbitrarily, and unacceptably, discarded one of the necessary
conditions for an extremum. As has already been mentioned,
the discarded equation can be thought of as either Eq. (2) or
(3) or some combination of them. Without ever mentioning
that an equation has been discarded, the author of the Munich
Method elects to replace the discarded equation with an equa-
tion defining the value of the entropy at the exit of the com-
bustion chamber. In particular, the Munich Method chooses
the entropy value to be the same as the entropy at the entrance
to the combustion chamber. But this then creates two prob-
lems of its own. First, it is tantamount to making the claim
that the combustion process is isentropic, which is manifestly
not the case. Second, it raises the unpleasant specter of having
to generate a value for the entropy at the entrance to the
combustion chamber. The author of the Munich Method as-
serts (p. 171, 246) that the correct value corresponds to the
entropy of the unreacted fluid mixture, presumably a solution
of cryogenic hydrogen and oxygen, and would therefore in-
clude the contribution of mixing to the entropy. Clearly, such
thermodynamic information is not readily available for this
system. If it were, he would quickly learn that the entropy
change associated with a mixing process, even in very nonideal
solutions, is always much smaller than the entropy generated
in combustion. Consequently, the assigned entropy value would
be far too small and would produce a combustion state dras-
tically different from what occurs in nature. But, ever re-
sourceful, he proceeds to solve the dilemma of the unknown
entropy value in a creative way. He claims (p. 191) that only
for the sake of "a fair comparison of the Munich Method with
the NASA-Lewis Code," does he deign to approximate the
unknown value with the entropy for an adiabatic flame com-
bustion. Naturally he realizes that this "is a (bad) approxi-
mation" to what he considers to be the correct value. Of
course, it does not hurt that his choice of a "(bad) approxi-
mation" guarantees that his calculated results, while still in-
correct, are not totally ridiculous. Even if one were prepared
to accept the working equations of the Munich Method, its
erroneous equations, and its isentropic combustion process,
one could question whether the mixture entropy is the ap-
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propriate value on purely physical grounds. In the cryogenic
hydrogen-oxygen rocket system, the fuel and oxidizer are
never mixed until they are injected into the combustion cham-
ber. Hence, the reactants enter the rocket as pure hydrogen
and pure oxygen rather than some solution of the two. As a
result, the mixing takes place within the combustion chamber
and must be thought of as a part of the overall combustion
process, which already includes the propellant vaporization
process. Consequently, the appropriate reactant properties
should then be a composition average of the liquid hydrogen
and liquid oxygen properties, rather than the properties of a
solution of the two components. This entropy is even lower
than that of a solution of the two components under com-
parable conditions.

I shall conclude this discussion of the combustion equations
for the Munich Method by returning to the necessary con-
ditions for an extremum. Equations (2) and (3) can be viewed
as a pair of linear equations in the Lagrangian multipliers for
energy and momentum, TTE and TTM. The exact solution of
these equations is given by

TTE = 1/T; TTM = -vlT

and this may be easily verified by substituting these values
into Eqs. (2) and (3). The author of the Munich Method refers
to this value of the Lagrangian multiplier for energy as the
trivial value (p. 141), and claims to calculate numerically a
value for the numerator which is about 1% smaller, namely,
about 0.99/r. This, of course, was only done for the hydrogen-
oxygen system. Clearly, the Munich Method is in error since
the pair of equations is of full rank and the solution given
here is the only solution. However, there is an even more
interesting conclusion which follows from the values of these
Lagrangian multipliers. If they are substituted into Eq. (1),
then only the first two terms in the second equality survive.
These equations may now be divided by the universal gas
constant

Aa = (11)

Equations (11), when coupled with the element constraints
Eq. (4), are exactly those which have always been used in the
Lewis Code to determine equilibrium compositions. Further-
more, to this set of equations add the remaining constraint
equations, Eqs. (5) and (6), and we have precisely those equa-
tions which are used in the latest version of the Lewis Code
to calculate ideal rocket performance for finite-area combus-
tors. This establishes analytically the assertion made earlier
that a correct implementation of the Munich Method must
agree exactly with the Lewis Code.

Nozzle Calculations for the Munich Method
The Munich Method for calculating the converging-diverg-

ing portions of a rocket engine requires the integration of
what is referred to as the "nozzle differential equation" (Eq.
3.39, p. 147 and Eq. 3.56, p. 161). This equation is merely
the partial derivative of the logarithm of the pressure with
respect to the logarithm of the temperature at constant en-
tropy. Its sole purpose is to define pressure as a function of
temperature along the nozzle, for an isentropic process, start-
ing at some initial position and extending to some terminal
position. For example, the initial position could be the com-
bustion state, while, the terminal position might be the nozzle
throat. The desired terminal state is defined by the nozzle
cross-sectional area, the constancy of mass flow rate, and the
requirement for energy conservation. The satisfaction of the
energy equation is used as the criterion for termination of the
integration process. If the terminal state is the throat, then
the flow velocity is compared to the sonic velocity. Any dis-
crepancy requires an adjustment of the mass flow rate and a

repeat of the calculation of combustion and throat until con-
vergence.

The procedure is correct in principle but execrable in prac-
tice. It is excessively, and unnecessarily, expensive because
the integration requires the determination of the local equi-
librium state at each point along the path of integration. The
author himself observes (p. 168) that the relations are "strongly
non-linear and require relatively considerable computing time."
The procedure is also prone to numerical error because in-
tegrating a differential equation is more difficult than simply
solving an algebraic equation. This inaccuracy is clearly evi-
dent in the calculated results for the Munich Method which
display a nonconstancy of entropy for what is ostensibly an
isentropic expansion process. The author observes (p. 210)
that "The more numerous the required incremental steps for
solving the nozzle differential equation between two states
are, the greater the resulting deviations." Yet he does not
draw the obvious inference: numerical garbage in the inte-
gration. By some inscrutable logic he declares that the "origin
of the discrepancies . . . is obvious." They are a consequence
of the poor thermodynamic data which he borrowed from the
Lewis Code (p. 210). Never mind that the Lewis Code has
always maintained a constant entropy during isentropic proc-
esses when using its own data base. The author does assure
his readers that he recognizes the inherent deficiencies of the
Lewis thermodynamic data (p. 168, 210). However, attempts
to work with more accurate data had to be abandoned because
(p. 168) "the radical increase in computing time made the
idea impractical."

Numerics
I shall now turn to an examination of the numerical results

calculated by the Munich Method even though, by now, it
should be evident that the method, as originally presented
and implemented, has some serious theoretical and practical
problems. The theoretical problems are caused by grievous
errors in thermodynamics and mathematics. These errors have
been corrected in the previous sections of this paper and,
hence, one could model rocket engines using the corrected
equations if one were so inclined. However, there is nothing
to be gained since the results would then be identical to those
calculated with the NASA-Lewis Code. The practical prob-
lems are linked to the method's severe computational inef-
ficiency in modeling the rocket nozzle. It substitutes the in-
tegration of an ordinary differential equation, coupled with
multiple solutions of the equilibrium equations, for what is
normally just the solution of a system of nonlinear equations.
My examination of the method's numerics will be limited to
the calculations which appear as a part of chapter four in the
second part of the book. This chapter is devoted to a com-
parison of rocket calculations which the author performed
both with the Munich Method and with the Lewis Code,
apparently using a version which was supplanted by many
later releases.

The original combustion equations of the Munich Method
have already been demonstrated to be thermodynamically and
algebraically incorrect. We now inquire about the correctness
of the numerical implementation of these incorrect equations.
The Munich Method claims to satisfy both the one-dimen-
sional energy and momentum equations in the combustion
state. It is simple to test that assertion using values presented
in computer output listings 2-7 (termed "protocols" in the
book), which correspond to various rocket engines using liq-
uid hydrogen and liquid oxygen as propellants. The test of
the energy equation discloses that the combustion properties
as computed by the Munich Method do indeed satisfy the
energy equation. A similar test for the momentum equation
is shown in Table 1.

From this table it is clear that the combustion properties
from the Munich Method do not satisfy the momentum equa-
tion. If that were the case, the numbers in columns 3 and 4
of Table 1 would be nearly equal. One could speculate about
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Table 1 Munich Method combustion calculations8

Listing
2
3
4
5
6
7

1/v,
Kgm/m3

6.2882
1.5588
3.7656
4.4902
9.1811
2.1214

MPa
0.4378
0.1872
0.7191
0.7883
1.0613
1.4650

PF- P,
MPa

0.2197
0.0949
0.3660
0.4011
0.5364
0.7834

2(PF - P),
MPa

0.4394
0.1898
0.7320
0.8022
1.0728
1.5668

the origin of the discrepancy. For example, it appears that
the Munich Method more closely satisfies the. incorrect equa-
tion

p + (m/A)2v/2 = pF

which contains the additional factor \ in the second term on
the left. This can be seen by comparing columns 3 and 5 of
Table 1. The differences between columns 3 and 5 might be
attributable to computational inaccuracies in the computer
program which implements the Munich Method. Regardless
of the source of error, it is now clear that not only are the
original combustion equations of the Munich Method incor-
rect, they are not even implemented correctly. This should
not be too surprising given that the Munich Method also
generates an isentropic process with a varying entropy.

The author of the Munich Method compares (Table 4.2-
4.7)8 calculated and experimental values of the mass flow rate
and the vacuum specific impulse for several rocket engines.
The comparison is between experimental data at a given ex-
pansion ratio, which he assembled from various sources, and
two sets of calculated values. One set of calculated values
came from the Munich Method with its finite-area combus-
tion. The second set of calculated values apparently came
from calculations which he carried out with an early version
of the Lewis Code which did not include finite-area combus-
tion. In this comparison, which would seem to favor the Mu-
nich Method over the Lewis Code, we find that the values
from the old Lewis Code are always closer to his chosen
experimental values than those from the Munich Method.
Apparently this does not perturb him, it merely demonstrates
the superiority of the Munich Method. His higher specific
impulse values and mass flow rates simply demonstrate how
much more improvement can still be achieved by improving

the design of the engine's hardware components such as the
turbopumps (p. 196).

Conclusions
This examination of the Munich Method for modeling rocket

engine performance shows that it is not based on some new
Alternative Theory, but is instead merely the application of
standard thermodynamics. However, the implementation is
beset by flaws in its thermodynamics, mathematics, and nu-
merics. If the author corrected the errors then his calculations
should produce values identical to those obtained from the
Lewis Code. However, he would then still be burdened by
an extremely inefficient algorithm for the calculation of nozzle
expansions.
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